The future of odour detection

31st August 2018


P18 19 electronic nose

Related Topics

Related tags

  • Electronics ,
  • Technology ,
  • Pollution & Waste Management

Author

Michael Atkinson

Rick Gould investigates the development of electronic noses, which could help to detect odour pollution.

Environmental regulators often receive complaints about odours – but when they visit the site, it is common for the smell to have vanished into thin air. Even if an odour is obvious, it can be difficult to detect with an instrument. Some people might notice very little, while others may be visibly distressed. This is the challenge: odours can be as elusive as they are complex – and even harder to measure. Until relatively recently, legislators often classed odours as a nuisance rather than a pollutant. This, however, is now changing, as there is increasing evidence that odours can be harmful to human health, while the science of measuring odours is improving rapidly.

The most effective tool

Complaints about odours have risen in parallel with industrialisation, urban growth and intensive agriculture, but most environmental legislators and policymakers do not consider smells to be as harmful as other pollutants, even though evidence linking odours with potentially damaging effects has started to emerge.

Researchers in North Carolina, for example, found a correlation between complaints about odours from intensive pig-farms, levels of hydrogen sulphide in the air and spikes in blood pressure among the people reporting them.

Because of the way the brain processes olfactory data, monitoring odours is much more complex than measuring many chemical pollutants. A single smell can consist of hundreds of chemicals: more than 600 contribute to the aroma of coffee.

During an investigation commissioned by the Environment Agency, the consultancy RPS found that odorous substances from an intensive poultry-rearing installation included carboxylic acids, ketones, aldehydes, aliphatic hydrocarbons, aromatic hydrocarbons, alcohols and reduced sulphur compounds such as hydrogen sulphide.

Furthermore, scientists believe that people are capable of recognising at least 10,000 distinct aromas, although we do not know how the brain processes this information. Despite advances in measurement technology, there is currently no single instrument that can match humans’ capability for detecting multitudes of chemicals and combining their olfactory effects into a single pattern. This is why the nose is still the most effective tool we have for monitoring odour.

A standard measure

The European standards body CEN has published one standard reference method (SRM), EN 13725, for measuring odour. Unlike other SRMs for measuring pollutants, EN 13725’s core detection method is the human nose, rather than measuring instruments. It employs a technique called ‘dynamic olfactometry’: a trained panel of people will sniff samples of air, which are diluted in stages within a device called an olfactometer until only half the panel can detect an odour. This degree of dilution is designated as the threshold of detection. The technique became popular with environmental regulators worldwide from the 1970s, with many developing their own olfactometers.

The problem was that these varying approaches were not always comparable or reproducible; there was no traceable reference standard to calibrate olfactometers, for example. Uncertainties around measurement prompted the need for a unifying SRM for olfactometry – so, in the 1990s, CEN mandated a work programme to develop EN 13725, which was published in 2003 and has significantly improved olfactometry.

“The most important improvement was the definition of the standard European Odour Unit (OUE), making this unit traceable to mass,” explains Dr Ton Harreveld, convenor of the CEN working group responsible for EN 13725 and founder of consultancy Odournet. One OUE is defined as the odour threshold for 0.123 micrograms of n-butanol in a cubic metre.

“We also specified strict performance criteria in EN 13725, applied through ISO/IEC 17025 accreditation, together with independent checking through annual, interlaboratory proficiency testing. This approach has provided a measurement method to quantify odour emissions at a known uncertainty.”

EN 13725 is now applied internationally and is specified in the latest EC Best Available Techniques (BAT) Conclusions for industries where environmental odour is a significant risk. Even before the EU published these documents, regulators such as the Environment Agency specified the use of EN 13725 in permits, together with emission limit values in OUE.

After 10 years, CEN initiated a review of EN 13725. “We now have a lot of international experience with the standard, so we are revising it to improve it further,” Harreveld says. The improvements include better sampling procedures and a robust method to determine odour thresholds for reference materials in addition to n-butanol. In simple terms, the measurement uncertainty will be lower, meaning better monitoring and control. Meanwhile, researchers continue with the quest for the ‘Holy Grail’ – a portable, continuous and instant odour-monitoring instrument that can match the power of the human nose.

The birth of the e-nose

The term ‘electronic nose’ started to appear in scientific papers during the 1980s, when researchers began developing instruments to mimic mammalian noses. These typically employed sensors, such as conducting polymers or metal-oxide semiconductors (MOS). The sensors were designed to detect either classes of odorous chemicals, or single compounds. A company in Arizona, for example, developed an MOS detector with a gold film, specific to hydrogen sulphide (H2S).

E-noses have to be tuned and correlated with specific odorous substances and there have been notable successes with this technology, such as in the food, wine and perfume industries. Engineers have installed e-noses on a space station to detect leaks of hazardous gases, and have been deployed in an odour-monitoring network around the petrochemicals industry in Rotterdam, The Netherlands. However, e-noses are still limited when compared with the human nose, and there are no benchmarks or universal standards. To encourage innovation and credibility, CEN has mandated a working group to develop performance standards and test procedures for e-noses.

“The standard will prescribe a methodology for validating the odour indicator metrics produced by instrumental odour monitoring devices (IOMs), assessing to what degree these metrics are indicative for human odour perception,” explains Harreveld. The validation will focus on metrics for the presence, classification and strength of odours. “IOMs will be tested in the context of the application, using real odour mixtures as a signal, comparing the results with measurements using EN 13725.”

Technological developments in e-nose sensors have reached a plateau in recent years. “There is a lot of promising news, but claims are so far not verifiable,” Harreveld says. “There are some interesting advances using biological sensors in combination with electronics.” In other words, biomimicry. As EN 13725 has shown, nature currently knows best when monitoring odours.

Rick Gould MIEMA CEnv is writing in a personal capacity as a freelance journalist

Image credit: iStock

Subscribe

Subscribe to IEMA's newsletters to receive timely articles, expert opinions, event announcements, and much more, directly in your inbox.


Transform articles

A social conscience

With a Taskforce on Inequality and Social-related Financial Disclosures in the pipeline, Beth Knight talks to Chris Seekings about increased recognition of social sustainability

6th June 2024

Read more

While biodiversity net gain is now making inroads, marine net gain is still in its infancy. Ed Walker explores the balance between enabling development and safeguarding our marine environment

6th June 2024

Read more

David Symons, FIEMA, director of sustainability at WSP, and IEMA’s Lesley Wilson, tell Chris Seekings why a growing number of organisations are turning to nature-based solutions to meet their climate goals

6th June 2024

Read more

Sarah Spencer on the clear case for stronger partnerships between farmers and renewable energy developers

6th June 2024

Read more

Groundbreaking legislation on air and noise pollution and measures to tackle growing concerns over disposable vapes provide the focus for Neil Howe’s environmental legislation update

6th June 2024

Read more

A system-level review is needed to deliver a large-scale programme of retrofit for existing buildings. Failure to do so will risk missing net-zero targets, argues Amanda Williams

31st May 2024

Read more

Chris Seekings reports from a webinar helping sustainability professionals to use standards effectively

31st May 2024

Read more

Media enquires

Looking for an expert to speak at an event or comment on an item in the news?

Find an expert

IEMA Cookie Notice

Clicking the ‘Accept all’ button means you are accepting analytics and third-party cookies. Our website uses necessary cookies which are required in order to make our website work. In addition to these, we use analytics and third-party cookies to optimise site functionality and give you the best possible experience. To control which cookies are set, click ‘Settings’. To learn more about cookies, how we use them on our website and how to change your cookie settings please view our cookie policy.

Manage cookie settings

Our use of cookies

You can learn more detailed information in our cookie policy.

Some cookies are essential, but non-essential cookies help us to improve the experience on our site by providing insights into how the site is being used. To maintain privacy management, this relies on cookie identifiers. Resetting or deleting your browser cookies will reset these preferences.

Essential cookies

These are cookies that are required for the operation of our website. They include, for example, cookies that enable you to log into secure areas of our website.

Analytics cookies

These cookies allow us to recognise and count the number of visitors to our website and to see how visitors move around our website when they are using it. This helps us to improve the way our website works.

Advertising cookies

These cookies allow us to tailor advertising to you based on your interests. If you do not accept these cookies, you will still see adverts, but these will be more generic.

Save and close