EIA Quality Mark Case Study

Millbrook Power Project – 299MW Natural Gas Power Plant NSIP

<table>
<thead>
<tr>
<th>Key Issues:</th>
<th>Purpose of the project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>There were several complexities associated with the proposed Millbrook Power Project (the Project) which required careful consideration during the EIA process. These included:</td>
<td>Provision of a new 299MW gas fired power plant which would feed electricity to the National Grid at times of system stress and peak demand. This type of project is vital in supporting the UK’s energy strategy of moving towards more low carbon generation.</td>
</tr>
<tr>
<td>• Consenting of numerous project elements under one EIA including a gas fired power generation plant, high pressure gas pipeline and associated connection to the existing UK gas National Transmission System and a new 400kV electrical connection to transfer power to the National Grid. The EIA therefore had to ensure that the impact of all elements of the project (alone and considered together) were taken account of at all stages;</td>
<td></td>
</tr>
<tr>
<td>• Very close proximity to a previously consented Development Consent Order (DCO) Project (Covanta RRF) which meant that cumulative effects were a key focus of the EIA;</td>
<td></td>
</tr>
<tr>
<td>• Close proximity to noise sensitive receptors meaning that noise impacts and mitigation were a key focus for scrutiny.</td>
<td></td>
</tr>
</tbody>
</table>

Description of the project:

The Project comprises a 299MW gas fired power plant along with associated development of a new underground gas pipeline connection to bring fuel to the plant and underground 400kV electricity cables to export power generated to the National Grid. It is located in the Rookery South Pit near Bedfordshire.

Construction of the Project is anticipated to start in 2021 and it has an estimated operational lifespan of 25 years.
EIA Learning Outcomes

Lessons learnt:

The Project demonstrated that regular interaction and liaison between the design team and EIA team could ensure that environmental considerations were taken into account at every stage of the design process. The design of the Project could therefore be refined as additional environmental information was made available and vice versa.

An example of this was when potential noise issues were identified by the EIA team as a result of operation of the power plant at the nearest sensitive receptors. The engineering team were able to re-configure the plant and apply additional design mitigation which meant that the impacts could be limited to an acceptable level.

Lessons learnt continued:

Additionally, whilst the value of regular liaison is well known, open engagement with consultees at the earliest possible opportunity, and maintaining that open engagement throughout the EIA process reinforced its value.

This has been demonstrated by the level of agreement on key issues reached with consultees before the application was submitted. This, in turn reduces the risk of unknown issues or challenges being raised by consultees later in the planning process leading to potentially costly delays.

The Project is located adjacent to a proposed Energy from Waste Plant which received a DCO in 2013. Given the close proximity of the two projects, the fact that they are both for energy generation and also share a common access, re-enforced the need for suitable cumulative assessment to be undertaken in the EIA process. Key issues to consider were noise, landscape and visual effects, and traffic and transport.

Contact details

Author: Chris Leach
Registrant: Peter Brett Associates, 10, Queens Square, Bristol, BS1 4NT
Tel: 0117 332 7840
Email: cleach@peterbrett.com

For access to more EIA case studies and hundreds of non-technical summaries of Environmental Statements visit:
https://www.iema.net/eia-quality-mark/eia-quality-mark-case-studies