Key Issues

The A9 Dualling Programme, Project 7, Glen Garry to Dalwhinnie EIA had to consider significant environmental constraint issues, including, but not limited to the:

- Environmental designations – including the Drumochter Hills Special Area of Conservation (SAC), Special Protection Area (SPA) and Site of Special Scientific Interest (SSSI);
- Proximity to the River Truim (designated as part of River Spey SAC) and its associated floodplain;
- Landscape and visual characteristics of the route, which runs through the Cairngorms National Park;
- Lack of alternative routes to divert traffic, and proximity of railway and electricity transmission infrastructure;
- Sensitive habitats – including wet heath, blanket bog, and shallow and deep peat deposits; and
- Cultural heritage assets, including old sheilings, General Wade’s Military Road and associated watercourse crossing structures.

Due to the constraining nature of designated sites and local environmental issues present, a series of environmentally-led workshops informed an iterative design development and EIA process.

Purpose of the project

The A9 is the main north-south trunk road between Perth and Inverness, connecting the Central Belt with the Scottish Highlands. The route is vital to the economy and communities of the north of Scotland. During the 2008-2013 period, there were 22 accidents on the current A9 single carriageway between Glen Garry and Dalwhinnie, including 15 serious and 2 fatal accidents. Dualling is anticipated to reduce accidents by improving overtaking opportunities and preventing right-turn manoeuvres across the carriageway.

Description of the project

In 2014, Transport Scotland awarded the CH2M Fairhurst Joint Venture (CFJV) the design and supervision contract for the Central Section of the A9 Dualling Programme. This included the design and EIA for Project 7, Glen Garry to Dalwhinnie. Project 7 upgrades the existing single carriageway to a new dual carriageway with a continuous central reserve over approximately 10 km of the A9, across the highest altitude section of the route.

The Proposed Scheme upgrades include Sustainable Drainage Systems (SuDS), roadside shelter belts for winter resilience, split level carriageways due to local topography, and provision of new grade separated junctions and accesses to serve residents at Dalnaspidal, Balsporran Cottages and Drumochter Lodge.

The project is scheduled for completion by 2025.
Lessons learnt
The aim of the adopted approach was to ensure that a range of potential environmental impacts could, in the first instance, be addressed, avoided or minimised by embedding mitigation through revisions to the design.

Across approximately 18 months of design development the environmental assessment team, working closely with engineering teams, consultees and Transport Scotland, influenced the development of the design based on knowledge gained through the previous DMRB (Design Manual for Roads and Bridges) assessment stages and the EIA process, resulting in a design that was iteratively amended for a reduced environmental impact to reach the final DMRB Stage 3 design.

One example of how this approach informed the design, was the consideration of mainline alignment layouts through the Pass of Drumochter and Drumochter Hills SAC, SPA and SSSI. As avoidance of these designated areas and sensitive habitats were not entirely possible, local level assessments were completed by the ecology and engineering teams, to determine local solutions such as the inclusion of retaining walls and earthworks extent reductions to avoid or minimise potential impacts.

This environmentally-led and iterative approach to embedding mitigation in the Proposed Scheme was then followed by EIA of the final design.

The EIA further presented ‘standard’ mitigation items (i.e. typical best practice items applied across all A9 Dualling projects) and project-specific mitigation (items required to further mitigate impacts) to be implemented prior to, during or following construction.

Lessons learnt cont. –

The nature of the A9 Dualling Programme itself, which comprises 10 individual projects, spanning approximately 130 km, was one of the main challenges faced by the EIA.

The need for consistency in assessment topic approaches and on consideration of the potential cumulative effects across multiple projects within the Programme was difficult.

However, regular environmental working group and steering group meetings with Transport Scotland, CFJV, other consultancies on the Programme and the Statutory Environmental Consultees was critical to developing and agreeing the final approach.

For access to more EIA case studies and hundreds of non-technical summaries of Environmental Statements visit: www.iema.net/qmark