EIA Quality Mark
Case Study

Cambridge Airport Engine Ground Run-up Enclosure

Key Issues –
As part of the EIA for the Cambridge Airport Engine Ground Run-up Enclosure (see below) a long-list was prepared of ‘other developments’ to be included in the Cumulative Effects Assessment (CEA) that was undertaken as part of the EIA. This was refined to form a short list.

A lot of development is being undertaken in the City of Cambridge, including several projects that would be considered as major developments using the definition for major development within The Town and Country Planning (Development Management Procedure) (England) Order 2015, namely projects involving –

(a) the winning and working of minerals or the use of land for mineral-working deposits;
(b) waste development;
(c) the provision of dwellinghouses where— (i) the number of dwellinghouses to be provided is 10 or more; or (ii) the development is to be carried out on a site having an area of 0.5 hectares or more and it is not known whether the development falls within sub-paragraph (c)(i);
(d) the provision of a building or buildings where the floor space to be created by the development is 1,000 square metres or more; or
(e) development carried out on a site having an area of 1 hectare or more.”

In order to undertake the CEA, an approach was needed that would permit a rapid review of the large number of existing developments across the city and wider area to generate both the long-and short-lists of other developments.

Purpose of the project
Currently, the testing of aircraft engines as part of the maintenance, repair and overhaul operations at Cambridge Airport is undertaken within an Engine Run-Up Bay (ERUB) located on the northern edge of the Airport, immediately to the south of Newmarket Road.

The ERUB comprises an area of apron with an earth bund around its northern side which provides protection from engine jet blast for vehicles, pedestrians and cyclists travelling along Newmarket Road. However the ERUB offers very little noise attenuation benefit. For this reason Marshalls Aerospace and Defence Group, the airport operator, is proposing to construct an engine Ground Run-up Enclosure (GRE) that delivers enhanced attenuation.

Description of the project
Cambridge Airport is located on the eastern fringe of the City of Cambridge, and straddles the administrative boundary between Cambridge City Council (CCC) and South Cambridgeshire District Council (SCDC). The new GRE will be located in an area in the north-west of the airport site adjacent to the main maintenance, repair and overall hangers.
Lessons learnt

The approach adopted for this project was based on the Planning Inspectorate (PINS) guidance note 17: CEA. Although this, and other PINS guidance notes, were produced to be used as guidance for Nationally Significant Infrastructure Projects (NSIPs) being authorised under the Planning Act 2008, the note includes information that is useful for those working on EIAs for other projects.

The guidance note establishes a four stage process:
Stage 1: establish the proposed development Zone of Influence (ZOI) and identify a long list of ‘other development’;
Stage 2: Identify a short list of ‘other development’ for CEA;
Stage 3: Information gathering; and
Stage 4: Assessment.

The approach to Stages 1 & 2 of the CEA was agreed in advance with the planning officers at CCC and SCDC.

For Stage 1 is was agreed to review all planning applications validated since 1 April 2015 (two years before the proposed development start date) in areas adjacent to the proposed development site.

Each LPA planning portal uses different search criteria for planning applications, with CCC listing them by ward and SCDC by parish. A list of wards and parishes for the searches was agreed with each LPA.

Contact details
- Oliver Gardner,
- Amec Foster Wheeler,
- oliver.gardner@amecfw.com,
- 02032151610.

Lessons learnt cont. -
A long-list was produced through a search of the LPA planning portals.

To develop the shortlist for Stage 2 it was agreed to select only those sites that meet the definition of ‘major development’. However professional judgement was also used where a development was close to one of the definitions under clauses (c) to (e).

The draft short list included 23 planning applications, many of which were for residential developments comprising 6-9 dwelling houses. Information on these, including their location, construction programme and application status, was obtained and professional judgement used to refine the finalised short list to those projects with the potential to give rise to cumulative effects.

By adopting this approach it was possible to quickly reduce a long list of over 1,500 planning applications to a short list of 11 for assessment.

For access to more EIA case studies and hundreds of non-technical summaries of Environmental Statements visit:
www.iema.net/qmark