It is right that tall buildings should be designed to minimise as far as possible their impacts on the daylight and sunlight levels received by neighbouring properties and the levels of shadow cast in existing open spaces. There are well-established design principles for this, notably, *Site Layout Planning for Daylight and Sunlight: A Guide to Good Practice* published\(^1\) by the Building Research Establishment (BRE). This paper offers some thoughts on the application of this ‘BRE Handbook’ in the context of EIA from the perspective of an EIA generalist.

The introduction to the first edition of the BRE Handbook from 1991 is clear that it, “...gives advice on site layout planning to achieve good sunlighting and daylighting, within buildings and in the open spaces between them...The guide is intended for building designers and their clients, consultants and planning officials. The advice given here is not mandatory and this document should not be seen as an instrument of planning policy. Its aim is to help rather than constrain the designer. Although it gives numerical guidelines, these should be interpreted flexibly because natural lighting is only one of many factors in site layout design.” The second edition from 2011 says almost the same except the subtle difference that it, “is purely advisory and the numerical target values within it may be varied to meet the needs of the development and its location.”

Not dissimilarly, there is guidance applicable to the city of Edinburgh\(^2\) that acknowledges that in some circumstances where there is an established townscape of high quality, such as a historic street network, which itself would not satisfy the requirements of the guidance, there may be sound urban design reasons why new development should not satisfy the standards.

The author of this paper has anecdotal evidence from consultants working in this area that the benchmarks in the BRE Handbook for daylight and sunlight assessments are based upon a low rise, suburban environment, not a high rise urban environment. Paragraph 1.6 of the BRE Handbook states that different target values can be used “in special circumstances” such as in high rise areas or historic city centres, suggesting that the recommended target values are not necessarily suitable for high rise environments. Furthermore, the diagrams that form part of the BRE Handbook are based on a suburban housing development model.

The most significant difference with the second edition of the BRE Handbook is the introduction of a new section (Appendix I) on EIA. This is certainly a welcome move in the right direction because prior to this the benchmarks in the BRE Handbook had only been applied (varyingly) to EIA using professional judgement, in particular to assessing the significance of effects. Extracts from Appendix I of the BRE Handbook include:
“Where the loss of skylight or sunlight does not meet the guidelines in this book, the impact is assessed as minor, moderate or major adverse.”

“Factors tending towards a major adverse impact include:

- A large number of windows or large area of open space are affected;
- The loss of light is substantially outside the guidelines;
- All the windows in a particular property area affected;
- The affected indoor or outdoor spaces have a particularly strong requirement for skylight or sunlight, e.g. a living room in a dwelling or a children’s playground.

Similarly, there are also “factors tending towards a minor adverse impact”. Appendix I also recognises beneficial impacts.

It is suggested that a debate be instigated to refine the methodology to account for this urban factor. The purpose of making this observation is not to seek to ‘water down’ assessments in order to present more favourable conclusions for developer clients. Rather, the purpose is to challenge the methodology and to propose a refinement that takes greater account of the nature and form of highly urbanised areas and the expectations of those living and working in them.

It may be that consultants working on urban projects need to identify different numerical target values that are appropriate to the urban environment and make those clear in their assessments, which would appear to be in accordance with the introductory text from the second edition of the BRE Handbook quoted above. As part of this it may be beneficial to undertake some meaningful consultation with members of the public living in urban environments to better appreciate how they understand and live with these issues. Different numerical target values would change the assessment outcomes once the EIA criteria in Appendix I are applied and presented in an Environmental Statement.

Ian Roach
URS Infrastructure & Environment UK Limited

For access to more EIA articles, case studies and hundreds of non-technical summaries of Environmental Statements visit:

www.iema.net/qmark