The management of excavated peat is an important issue, particularly when working on upland sites. Consideration of peat management and reuse is now central to the EIA process for such sites and it is commonplace for regulators to request a Peat Management Plan (PMP) to be produced as part of an EIA.

The purpose of the PMP is to encourage developers to consider the need to minimise and manage peat excavation in order to avoid a surplus of material requiring disposal. The rationale behind this is reasonable as peatland comprises not only a valuable carbon store, but a sensitive habitat which can be difficult to restore. Therefore there is notable value in encouraging developers to consider this issue from the outset. However, emphasis on peat management is increasingly leading to importance being placed on this above other issues, often leading to a desire to minimise the footprint of the development and utilise peat in a manner which may not always produce the most appropriate long term environmental solution overall, particularly where landscape mitigation is concerned.

Current Guidance (SEPA/Scottish Renewables ‘Guidance on the Assessment of Peat Volumes, Reuse of Excavated Peat and the Minimisation of Waste, Version 1’ (2012)) advocates a hierarchy for peat management, starting with prevention of peat excavation, followed by the minimisation of the excavated volume of peat, and finally suitable re-use. The guidance requires developers to show a clear role for the re-use of peat in order to avoid classification as waste under the EU Waste Directive.

The guidance recognises landscape mitigation as a justifiable method of re-use for peat and this is often favoured as a way of achieving peat balance. However, in order for landform to be a reasonable option for re-use, it must be remembered that aesthetic benefit should be its primary function. The onus of the PMP, to quantify the volumes of peat to be excavated and re-used and demonstrate lack of surplus, often results in a weighting being placed on landform as a method of achieving peat balance, overlooking it’s all important aesthetic role. Indeed, it is often the case that a deficit is preferred to an equal balance, potentially undermining the expected benefits of landscape mitigation and the parameters under which landscape and visual assessment will have been undertaken.

With the weighting of the PMP process on avoidance of waste, and prevention of excavation being the first stage on the hierarchy, there is pressure to keep the footprint of the development as small as possible. This is a reasonable objective where sensitive habitats exist and unreasonable disturbance should be minimised. However, this simplistic approach to quantification and balance often leads to the relocation of peat into bunds adjacent to the development, reducing visibility (and therefore comprising viable mitigation) but often out of

<table>
<thead>
<tr>
<th>Peat Management and Landscape Mitigation: The Need for an Integrated Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>The management of excavated peat is an important issue, particularly when working on upland sites. Consideration of peat management and reuse is now central to the EIA process for such sites and it is commonplace for regulators to request a Peat Management Plan (PMP) to be produced as part of an EIA. The purpose of the PMP is to encourage developers to consider the need to minimise and manage peat excavation in order to avoid a surplus of material requiring disposal. The rationale behind this is reasonable as peatland comprises not only a valuable carbon store, but a sensitive habitat which can be difficult to restore. Therefore there is notable value in encouraging developers to consider this issue from the outset. However, emphasis on peat management is increasingly leading to importance being placed on this above other issues, often leading to a desire to minimise the footprint of the development and utilise peat in a manner which may not always produce the most appropriate long term environmental solution overall, particularly where landscape mitigation is concerned. Current Guidance (SEPA/Scottish Renewables ‘Guidance on the Assessment of Peat Volumes, Reuse of Excavated Peat and the Minimisation of Waste, Version 1’ (2012)) advocates a hierarchy for peat management, starting with prevention of peat excavation, followed by the minimisation of the excavated volume of peat, and finally suitable re-use. The guidance requires developers to show a clear role for the re-use of peat in order to avoid classification as waste under the EU Waste Directive. The guidance recognises landscape mitigation as a justifiable method of re-use for peat and this is often favoured as a way of achieving peat balance. However, in order for landform to be a reasonable option for re-use, it must be remembered that aesthetic benefit should be its primary function. The onus of the PMP, to quantify the volumes of peat to be excavated and re-used and demonstrate lack of surplus, often results in a weighting being placed on landform as a method of achieving peat balance, overlooking it’s all important aesthetic role. Indeed, it is often the case that a deficit is preferred to an equal balance, potentially undermining the expected benefits of landscape mitigation and the parameters under which landscape and visual assessment will have been undertaken. With the weighting of the PMP process on avoidance of waste, and prevention of excavation being the first stage on the hierarchy, there is pressure to keep the footprint of the development as small as possible. This is a reasonable objective where sensitive habitats exist and unreasonable disturbance should be minimised. However, this simplistic approach to quantification and balance often leads to the relocation of peat into bunds adjacent to the development, reducing visibility (and therefore comprising viable mitigation) but often out of</td>
</tr>
</tbody>
</table>
keeping with the types of upland landscape involved.

Whilst the role of visual mitigation is to screen significant views, the role of landscape mitigation, is to help integrate the development into the character of the landscape context. Peat landscapes are usually upland, often exposed and therefore planting for landscape mitigation is often not an option. In such cases, appropriate landform is therefore key to minimise the effects of new development. The tight confines of a development footprint often lead to buildings or infrastructure surrounded by narrow, linear landform which relates poorly to wider landscape patterns and characteristics. In such cases, this landform itself can appear to increase the extent of development, leading to an increased landscape effect.

There is therefore an argument that, where development is proposed in a sensitive landscape (as is often the case with peat landscapes where there will be little other development) and mitigation is considered important, this should be considered as central to the design, and the development footprint sized to allow appropriate landform. Within this scenario the landscape mitigation itself becomes an element contributing to the PMP, rather than an outcome. Whilst this may lead to a greater area of temporary disturbance, the objective of the PMP will be reached more productively as the requirement to create the landscape mitigation creates a more justifiable re-use of the excavated material. The PMP therefore becomes a tool in the design development, rather than simply an exercise to demonstrate lack of surplus.

In summary, it is suggested that an open-minded and flexible approach from both developers and decision makers is of greatest benefit to the PMP process, considering issues specific to each development. Although unnecessary disturbance of areas should always be avoided, an integrated approach which considers the requirements for landscape mitigation from the outset, allows sufficient space for these measures to be implemented, and places aesthetics at the forefront of their design, should be employed by both developers and decision makers in order to achieve the optimum environmental long term solution.

ASH design+assessment Ltd
(April 2015)

For access to more EIA case studies and hundreds of non-technical summaries of Environmental Statements visit:
www.iema.net/qmark