Verified Visual Montages and Environmental Impact Assessment

Commonly used in planning and Environmental Impact Assessment (EIA), the aim of verified visual montages (VVM), or also sometimes called Accurate Visual Representations (AVR), is to impartially represent proposed development as it would be expected to appear in reality. Alison Carroll and Chris Hale examine their role and some of the technical considerations when considering their use.

Whilst drawings such as plans, sections and elevations are a standard requirement in planning applications, not everyone can interpret them. Images that show a proposal accurately within its setting can greatly assist interpretation by both professionals and lay people.

Earlier in the process, accurately visualising the development within its context can also assist at the design stage. It can help embed mitigation with the definition of appropriate development parameters, such as height and massing, and selection of materials.

A VVM is distinct from other forms of visual representation; it is, as the name suggests, a verifiable image. The view is created from a defined ‘real’ location and not from an imagined perspective as can be the case with some sketches or computer generated images. The image is created using quantifiable data which can then be used by others to scrutinise the work without its veracity being questioned. This makes verified views particularly valuable in planning, for example as part of the EIA process, in public consultation, planning committees and at public inquiry.

VVMs use a baseline of verifiable visual information and combine photographic views with accurate CAD 3-D representation of the proposals to an agreed level of detail. There is a range of technical guidance available to inform their preparation, including:

When producing VVMs, a number of options are available to aid design and planning decisions according to the level of detail required. They can be classified to broadly define their purpose in terms of the visual properties they represent. The following classification, derived from guidance produced by the GLA (2012), is a cumulative scale in which each level incorporates all of the properties of the previous level.
The levels are referred to as Accurate Visual Representation (AVR) Levels 0, 1, 2 and 3 as illustrated in Figure 1.

This can then be supplemented with high quality photography taken to exacting standards.

Case study: Pinesgate, Bath

Pinesgate, within the Bath World Heritage Site (WHS), was allocated as a site for mixed-use development including retail, offices, leisure and residential. In 2015, a planning application for an office building on one half of the site was refused because the building height and materials would have a detrimental impact on the WHS.

A revised scheme, incorporating offices, a college building and student accommodation, was designed with the aid of VVMs. The VVMs were also used in the EIA, in the public consultation exercise and in discussion by the planning committee. Feedback from members indicated that the VVMs were very helpful in allowing an understanding of the proposal. The scheme was approved.

This article was written as a contribution to the EIA Quality Mark’s commitment to improving EIA practice.

Alison Carroll is an Associate at Nicholas Pearson Associates and is a Full Member of IEMA, a Chartered Environmentalist and a Registered EIA Practitioner. Chris Hale is also an Associate at Nicholas Pearson Associates.

January 2018.