Hawick Flood Protection Scheme

Prepared for
Scottish Borders
Council

March 2017
1. Introduction

Hawick has had a long history of flooding, and most recently experienced severe floods in winter 2015/16 (Figure 1). The Scottish Borders Council (SBC) has undertaken studies into flood risks affecting its towns in recent years, and Hawick was identified by Scottish Environment Protection Agency (SEPA) as at risk of severe flood events and priority for flood risk reduction.

In 2013, SBC commissioned a study into the feasibility of a Flood Protection Scheme (FPS) at Hawick to mitigate the impacts of flooding in Hawick from the River Teviot and backwater effects associated with the Slitrig Water. SBC set twenty objectives for the Scheme relating to economic, hydraulic, technical, environmental and social factors. The Scheme forms the second phase of the SBC’s implementation plan for flood protection in Hawick.

Over fifty separate flood protection options were considered and taken through a detailed option selection process to determine the proposed Scheme (referred to here as the “Scheme”). The selection process examined the merits and disadvantages against the twenty scheme objectives and options were refined using technical, economics and environmental assessments, taking into account factors such as cost-benefit, practicability, environmental impact, and the stakeholder consultation and comments from the general public.

The resultant proposed Scheme for Hawick comprises a number of flood protection measures, including: flood walls; an embankment; raising of three footbridges over the Teviot; and drainage improvements.

In order to comply with the Flood Risk Management (Scotland) Act 2009, SBC commissioned an Environmental Impact Assessment (EIA) of the Scheme, and Environmental Statement (ES) documents were produced which detail the findings of the EIA. This Non-Technical Summary (NTS) provides an outline of the content of the ES documents for the general public and non-specialist third parties.

2. Site Location

Hawick lies in the Scottish Borders on the confluence of River Teviot and Slitrig Water, within the upper section of the Tweed catchment. It is located approximately 50 miles from Edinburgh and 45 miles from Carlisle (see Figure 2).
3. Flooding Problem in Hawick

Owing to its riverside location on the Teviot and Slitrig, Hawick has had a long history of flooding and associated disruption and property damage. Severe events occurred in October 2005, November 2009 and most recently in December 2015 and January 2016 (Figure 3).

In addition to the risk to life, such severe flooding also resulted in the inundation of a number of business premises and structural damage to walls and bridges throughout the catchment, and associated economic damages and potential infrastructure disruption.

Since November 2015 alone, there have been numerous large and smaller scale floods. The frequency and severity of flood events in Hawick (and across the UK) are also predicted to rise with climate change.

SBC’s studies have shown that as part of their long term strategy of flood protection in Hawick, a FPS will significantly reduce flood risk to hundreds of properties and businesses in Hawick without compromising economic or environmental requirements.
4. The Proposed Scheme

The FPS has been designed to manage the flood risk from the Teviot and backwater effects by the Slitrig Water in six discrete areas (called flood cells) throughout Hawick, as shown in Figure 4.

![Figure 4: Hawick FPS flood cells (areas to be protected)](image)

The outline design of the proposed Hawick FPS comprises a series of new flood defences on either side of the River Teviot from Volunteer Park to Weensland, and the lower section of the Slitrig Water from the Drumlanrig Bridge to the confluence with the Teviot. The flood defences have total length of approximately 6km and are located on both banks of the River Teviot and Slitrig Water, and some further inland.

The flood defences are predominantly new flood walls, with an embankment at Weensland, and they range in height from approximately 0.2m to 2.9m in height. To accommodate the flood defences within the town, the Scheme also includes seven flood gates, ramps, footpaths and landscaping. In summary, the key Scheme flood protection measures comprise:

- 5,524m flood walls (including glazing and stone cladding in parts);
- 291m flood embankments;
- 185m culverts;
- 56m abutment modifications and raising of three footbridges over the River Teviot;
- Up to 2.5km of erosion protection for the riverbank and toe of some flood walls; and
- Seepage protection, improved drainage and up to eight pumping stations.

The outline of the proposed layout of the Hawick FPS is given in Figure 5.

The Scheme has been designed to allow for future flexibility, in that the flood walls/bank may in future be increased in height should greater protection be required in future. This measure, along with future Natural Flood Management measures in the wider catchment may help account for the future effects of climate change under which flood events are predicted to become more frequent and severe.
Figure 5: Hawick FPS proposed Scheme alignment
The proposed Scheme will protect approximately 724 residential and commercial properties from the effects of flooding up to the 1 in 75 year fluvial flood event\(^1\) and from a variety of other flood water sources including seepage (groundwater), high intensity rainfall and secondary (surcharging water mains or sewers) flood sources.

SBC has undertaken a number of studies exploring flood management options in Hawick over recent years. Since 2010, over fifty alternative flood protection solutions have been considered, including upstream flood storage, Natural Flood Management measures, demountable defences, and dredging options which were discounted. The selection of the preferred option was carried out in liaison with stakeholders, taking into account the technical feasibility, value for money, and environmental, social, and sustainability aspects, and assessed against SBC’s project objectives.

Since the autumn 2015, further computer modelling, environmental studies and stakeholder engagement has enabled refinement of the proposed Scheme. This included efforts to minimise the height of the walls by setting back the flood defences from the rivers’ edge where possible and raising three footbridges to maximise the capacity of the floodplain. Another key design decision was made following tests that demonstrated that the ground conditions would be suitable for the preferred sheet pile type of flood wall in most places rather than a traditional type of wall design that requires greater space and time to construct.

5. Construction

The anticipated construction programme is outlined as follows:

- **Enabling works:** February 2018 - April 2019
- **Main construction phase:** May 2019 – November 2021 (Scheme operational by June 2021)

The likely construction methodology was considered to ensure that the preferred Scheme could be constructed safely and without major logistical challenge. Methods will be developed further during detailed design in liaison with stakeholders such statutory consultees, landowners, utilities companies and SBC.

Enabling works will take place before the main construction phase, including traffic management arrangements, utilities diversions, tree felling and vegetation clearance. For the main works, site compounds will be established around the town and construction activities will include sheet piling, earthworks, shuttering and concrete pouring and dismantling existing walls.

There are many constraints to constructing works near the rivers in Hawick as many buildings and bridges (several of which are of heritage importance), roads, pavements, buried utilities and other infrastructure are situated very close to the riverbanks. Therefore, some of the construction works will be required to be located within the river channel, for a length of approximately a third of the overall length of proposed flood defences (see example in Figure 6).

Temporary road and footpath closures will also be required to provide a suitable working area, and suitable diversions will be put in place.

1 Flood event severity: 1 in 10 year flood event is less severe than a 1 in 100 year event, which is less severe than a 1 in 200 year event.
and work will be carried out in to minimise disruption. Also, the appointed contractor will be required to provide temporary flood protection measures so that the town does not receive a greater flood risk than currently as the construction works are in progress.

The working areas will be reinstated, and in some cases, landscaping and other enhancements to public space are proposed.

6. Operation

The Scheme has been designed to have minimal operational and maintenance requirements during the life of the project (anticipated to be over 100 years). Once constructed, the Scheme will only require occasional interventions to operate, such as closing flood gates during predicted flood events, and maintain the flood protection measures by SBC, such as pointing, removal of debris from bridges, and replacing seals.

7. Stakeholder Engagement

Between 2010 and 2016, the Project Team undertook a wide range of consultation exercises with the local businesses, residents and key stakeholders. This consultation helped to confirm whether a FPS for Hawick was economically, socially, environmentally and technically viable, and has also been an important influence on the development of the proposed Scheme design, mitigation and enhancements.

Activities have included: face to face meetings with statutory authorities, landowners and third party interest groups; site meetings; stakeholder workshops; working group meetings; public exhibitions; written consultations (letters and emails); and telephone conversations. The Project Team have also used press releases, and set up a dedicated website (www.hawickfloodscheme.com) and Facebook page to disseminate information on the proposals and planned consultation events.

At various stages in the project, Scottish Natural Heritage (SNH), the Scottish Environmental Protection Agency (SEPA), Historic Environment Scotland (HES), The River Tweed Commission and other key environmental bodies have been consulted on the Scheme design and approach to the EIA and to ensure any potential issues were raised and addressed accordingly.

A key public exhibition for the proposed Scheme was held on 23 and 24 August 2016 at Hawick Town Hall (Figure 7), which was well attended. Visitors to the exhibition were encouraged to fill in simple questionnaires and provide written comments on the proposed Scheme. Feedback provided during the event indicated that:

- 85.5% of respondents were in favour of the Scheme;
- 9.5% were undecided; and
- 5% were not in favour of the Scheme.
- The wall height was the most frequently noted concern on the questionnaire.

Figure 7: Hawick FPS public exhibition August 2016
8. The EIA Process

EIA is the process of gathering together and assessing the environmental information pertinent to a proposed development. EIA aims to ensure the likely environmental effects are properly understood before any development consent is granted or approved, and it provides a means of assessing the likely significant effects of a proposal and the potential for avoiding, reducing or offsetting any adverse impacts. As part of this, the environmental specialists have advised the project design team of potential risks and means of minimising impacts. EIA is also a means of ensuring that planning decisions are made with full engagement of statutory bodies, local and national groups and members of the public.

The environmental information is presented in an ES and NTS and is submitted with an application for the scheme consent. In the case of flood protection schemes in Scotland, the ES is submitted to the Local Authority (SBC in this case) together with the Scheme information as part of the scheme confirmation process in accordance with the provisions of the *Flood Risk Management (Scotland) Act 2009* and *The Flood Risk Management (Flood Protection Schemes, Potentially Vulnerable Areas and Local Plan Districts) (Scotland) Regulations 2010*.

The following sections of this NTS outline the results of the assessments undertaken.

9. Population, Recreation and Amenity

With a population of approximately 14,294 (2011 census), Hawick is the largest town in the Scottish Borders. There are various cultural, heritage and recreation features in Hawick that are important to locals and visitors, and Hawick hosts several festivals each year. The rivers are key focal points for the town and, in recent years, Hawick has transformed itself from being the centre of the textile industry in the Scottish Borders to developing new industries and enhancing its role as a gateway town and tourist attraction.

While construction of the Scheme offers limited opportunities for local businesses, the large scale and duration of the construction works (approximately two years plus advance works) required to build it may have adverse socio-economic effects on local residents, businesses and visitors as a result of:

- Continued and changing traffic diversions and associated driver confusion / frustration; regional and local movements of large plant and machinery; constrained pedestrian and cyclist access and crossing points – this can also discourage people from visiting the town centre and have adverse effects on local businesses.
- Health and wellbeing impacts associated with construction works increasing traffic, noise, dust, mud, health and safety, and disruption, with potential reduced access to community services, local angling opportunities, greenspace and pathways.
- Risks associated with people accessing construction areas and to construction workers.

Effective liaison with businesses will be required to understand access needs and busy periods and how best to minimise disruption to potential customers. This will be aided by keeping the public well informed about measures to minimise impacts and any anticipated disruption. Construction works will be planned to minimise disruption as much as possible, with effective monitoring put in place to manage the nuisance impacts. Also maximising economic opportunities would include requiring the Contractor to include community benefits (e.g. targets for sourcing services locally and, where feasible, providing training to local apprentices or unemployed individuals).

In the long term, the town is anticipated to significantly benefit from improved flood protection (reduced repair and clean-up costs for the Council, residents and businesses); better health and safety (reduced disruption and stress) and, with sensitive planning, improved recreation and amenity benefits (from greenspace and path network improvements). In addition, the appropriate choice of materials, use of glazed panels within the flood walls in places, restoration of footpaths, replanting of trees, providing public art and the sensitive redesign of public spaces will all help to reduce negative effects in the long term.
10. Biodiversity and Nature Conservation

The River Teviot and Slitrig Water flowing through Hawick are legally protected nature conservation sites and are protected through local planning policy. The river environment offers suitable habitat for a number of important fish species (e.g. Atlantic salmon and sea lamprey) and protected mammal species (e.g. otter, bats) as well as breeding birds (in trees and along the riverbanks).

The design of the Scheme includes some measures to minimise impacts, such as setting back the defences from the river edge or avoiding trees as much as possible. However, the main impacts are associated with the construction phase of the proposed Scheme and include:

- Short term habitat loss for species that rely on the river (including otters, birds, spawning salmon, lamprey and bats) and reduction in habitat connectivity along the river (including loss of trees from the riverbanks).
- Potential pollution of the river during construction.
- Potential barriers to the movement of migratory fish (including salmon).
- Disturbance of a bat roost and loss of an otter holt.
- Potential spread of non-native, invasive species.

Further measures to reduce impacts will include minimising the length of in-river working and adopting SEPA best-practice methods for construction in or near rivers; ensuring the fish ladder at the Coble Cauld is open to fish passage during works; avoiding piling near key salmon spawning habitat at most sensitive times; liaising with River Tweed Commission (RTC) about fish impacts; consulting with SNH on how best to deal with potentially affected protected species and applying for licences as needed; ensuring provision of an appropriate planting plan; undertaking vegetation clearance as required outside the bird nesting season; and removing fish from the temporary working areas.

Although these measures will help to ensure protected sites are appropriately safeguarded, there will still be some temporary loss of salmon habitat (i.e. gravel areas where they spawn) and lamprey habitat during construction, and there remains a risk of pollution and sedimentation that could affect fish although unlikely to happen. Liaison will continue with SNH, RTC and SEPA to design works to manage these risks appropriately. However in the long term, the landscaping and habitat created by the Scheme (including replanting at least twice the number of trees removed) will be beneficial to biodiversity in and around Hawick.

11. Noise and Vibration

Building such large flood defence structures along the river banks in Hawick will require over two years of construction works and involve a number of noisy and vibrating activities such as site clearance, sheet piling and earthworks that will be sustained on a near daily basis. The associated noise and the proximity of residential and commercial properties has been considered, along with the potential vibration impacts that can affect the cosmetic or structural integrity of buildings.

The impacts are associated with the construction phase, with noise and vibration impacts affecting local residents and businesses, while vibration impacts may affect buildings. A number of likely mitigation measures to reduce noise impacts have been identified including adopting good site practices and construction methods to lessen noise and vibration, surrounding working areas with temporary barriers, timing works sensitively in agreement with SBC Environmental Health Department and monitoring the noise levels. Also, the use of ‘soft-start’ piling techniques and vibration monitoring will, where feasible, help reduce vibration impacts to some extent but these will need to be closely monitored.

The most significant noise and vibration impacts are predicted around Sandbed, where should the resultant noise and vibration go above acceptable levels, alternative measures would be considered in agreement with SBC Environmental Health Department and residents, such as temporary rehousing for residents in the vicinity of Bridge House if needed as a last resort due to the proximity of works.
Also close measurement of buildings near the piling works throughout town (but especially at Sandbed where the impacts are predicted to be greatest) will help address any potential cosmetic or structural damage to buildings from vibration. Some of these are historic buildings, which are discussed in Section 16 below.

12. Townscape / Landscape and Visual Effects

Hawick is a gateway town from the lowland and upland valleys within the region, and has its own distinctive architecture, such as within the Conservation Area. The town is made up of a number of districts with their own characters, ranging from the medieval heart, broad nineteenth century High Street, employment land and residential areas dating from Victorian times to present day.

Sensitive construction site management will be required to minimise impacts on views and the townscape over the relatively long construction period and the approximately 6km extent of the works. Building such large structures through the historic centre of the town along the riverside could have a major effect on key viewpoints and the character of the town, which will potentially affect residents, visitors, businesses and footpath users negatively throughout the town. The forthcoming detailed stage will inform the best approach to addressing such potential long term impacts and will consider the use of glass panels; wall finishes; stepped footpaths; widened pavements; the integration of artistic elements; and the nature and position of replacement vegetation.

Further recommended mitigation measures include removing existing walls; using consistent street furniture; providing linking footpaths along the river’s edge; improving access to the riverside and providing new seating zones and following best practice guidelines and recommendations to in relation to landscaping. Landscape and amenity improvement opportunities will be considered at the public open spaces within the Scheme, including a redesign of Little Haugh park, and the design of other open spaces such as Common Haugh, Duke Street and Weensland.

Although the mitigation and improvements to public spaces will reduce these negative changes overall, the scale of the changes cannot be fully avoided in several places given the heights of the proposed walls. There will be short term negative effects from the works on the character of the Conservation Area and changes in views at several key places around the town for the duration of the construction works. The greatest effects will be felt once the works are completed. Over time, the severity of the longer term changes in character of areas and views may lessen as planting grows, but major changes are predicted on the views from Teviot Crescent and Duke Street. There will also be notable changes in the character of residential areas (such as Duke Street and Teviot Road), key recreation/visitor areas (such as Common Haugh, Little Haugh and Buccleuch Park) and also views from the many bridges across the rivers (such as Lawson Bridge, Albert Bridge, James Thompson Bridge, Mart Street Bridge and Drumlarig Bridge).

Detailed plans for the measures mentioned above will be prepared for agreement with SBC that will help reduce the long term negative impacts as much as possible, along with proposals for improvements to public spaces for consultation with the public to help maximise the wider benefits of the proposed flood protection scheme.

13. Water and Resilience to Climate Change

Impacts upon the rivers, groundwater and water quality are considered in the environmental assessment. The River Teviot, Slitrig Water and groundwater bodies are considered to be of particular importance, and average peak flows are estimated to increase in the catchment in the future, increasing the number of flooding events which are expected to worsen over time without a flood protection scheme in place.

The main impacts on the water environment identified during the construction phase (works in and out of the river bed) relate to potential sediment run-off during a flood event or heavy rainfall affecting water quality in the River Teviot, and pollution incidents affecting water quality of the River Teviot and groundwater bodies. These can be minimised through best working practices and monitoring of the watercourses and groundwater and will require careful planning to minimising risks of pollution or of
materials (e.g. soils and the stone brought in to build construction platforms) from being washed away. SEPA will regulate the construction method through the licensing procedures for engineering works in the water environment to ensure best practice is adopted and risks are minimised.

The creation of new flood defences can increase flow and levels in the river as a result of channel narrowing and can separate the channel from its floodplain for a short stretch of the river. However, within the Hawick FPS design, wherever it is possible these defences have been set back from the river edge to allow continuity with the floodplain and minimise this.

14. Geomorphology (Changes in Landform)

Impacts upon the fluvial geomorphology of the Teviot catchment considered in the environmental assessment include the interactions of water and sediment within the river channels and floodplains.

The proposed engineering works have the potential to change flow regimes, sediment transport patterns and channel morphology. Good construction site working practices, minimising the extent of in-river working, and restoration of the river bed will minimise damage to the riverbank and channel beds, although there will still remain a risk of a notable increase in sediment from potential disturbance and scouring during construction works.

The nature of the proposed Scheme will result in long term, negative changes to the flow and sediment dynamics, fixing the channel position and reducing the connection of the river from the floodplain. However the proposed Scheme has been designed to minimise the long term negative impact from fixing the channel position and reducing its connection with the floodplain by setting defences back from the channel where possible. Although such effects will still occur, it is considered highly unlikely that any of the proposed development will impact upon the Water Framework Directive status of any of the water bodies.

Regular monitoring during construction and post-construction of the affected waterbodies would highlight any unexpected geomorphological consequences of implementing the Scheme and allow these to be addressed. The later, third stage of SBC’s flood risk management strategy for Hawick includes Natural Flood Management measures upstream of Hawick and restoration in the upper catchment outside of this Scheme. If that proposed work is commissioned, it provides an opportunity to further compensate for the loss of natural bank, riverbed and reduced channel-floodplain connection.

15. Soils, Geology and Land Contamination

A review of the site history along with chemical analyses of ground samples from various locations where the Scheme will be built has revealed that there is a low risk overall of land contamination at the site, and it is unlikely that any contaminant present will spread either to land, air or water, so the potential negative impacts are considered minimal.

There are however a few areas where some asbestos may be present, but the risk of disturbing such will be closely monitored during construction, with appropriate measures being taken to avoid any potential spread or contamination. In particular, care will be taken when excavating near the former gas works, as there is a potential for some contaminated groundwater, which will be tested prior to being pumped out if necessary for disposal under a waste license from SEPA.

16. Archaeology and Cultural Heritage

Hawick has its origins in medieval times, and was expanded by the development of the wool-milling industry and as a result has many cultural heritage assets and the potential for buried archaeology.

A notable impact during construction is the potential for vibration impacts from piling to damage buildings at the Sandbed area including the Albert Bridge and other Listed Buildings. The level of potential damage is unknown and would not be fully mitigated through monitoring and historic building recording, although should repair work be necessary, the results of historic building recording
can be utilised to guide the necessary work. Further consultation with SBC Archaeology’s Adviser, landowners and the local heritage group will take place.

Although there is potential for the temporary construction works and presence of flood walls along the river in the long term to affect the setting of the Conservation Area and Listed Buildings (especially at Sandbed and the historic buildings concentrated around the confluence of the Slitrig and Teviot), the design of the proposed FPS has incorporated measures to reduce the heights of the proposed flood defences as much as possible and the careful selection of wall cladding that complements the historic character of the area will help them to integrate into the local environment as much as possible. On the other hand, in the long term, the improved flood protection for the town will bring the notable benefits of supporting the preservation of historic assets within Hawick and retaining the integrity of the historic townscape.

17. Traffic and Transportation

Once built the Scheme is not predicted to create any negative traffic and transportation issues. However, the construction of the Scheme within the centre of Hawick for over two years (plus the advance works) will affect the road network, disrupt pedestrian and vehicular access and require appropriate traffic, footpath and cycleway management to limit adverse effects on residents, commuters and visitors for several months.

The predicted effects on traffic will affect some areas more than others, in particular, the temporary closure of Commercial Road will also lead to temporary negative impacts at Princes Street and High Street. As such, while not assessed as being significant in scale, measures have been developed to avoid and lessen the severity of impacts.

The placement of compound sites and working areas has been considered to minimise disruption at key parts of the road network and traffic and pedestrian management measures will be put in place to minimise delays and optimise safety. Careful planning will be made for the temporary bridge closures needed to accommodate the construction works to minimise severance impacts on traffic, pedestrians and cyclists. Construction traffic will be directed to use particular routes (A7, A697 and A6088) where possible to reduce congestion on the rural road network. Such measures will be implemented in liaison with Council officers, contractors, bus operators and local businesses.

The proposed Scheme presents an opportunity for improving pedestrian and cyclist pathways, which the forthcoming detailed design stage will consider in discussion with SBC using best practice guidance, with a view to delivering some improvements where possible.

18. Interaction with Other Projects

The EIA assessed the potential environmental effects of the proposed Scheme that could be combined with themselves and other projects’ effects on the same environmental features (called cumulative or in-combination effects). The other projects considered included recent or planned works on the Teviot and Slitrig, proposed or recently approved developments subject to planning applications (such as wind farms, distilleries, new supermarkets, and the 3G sports pitch), the regeneration sites identified in SBC plans (such as former mill sites or areas allocated for housing or business use) and the Natural Flood Management initiatives in the catchment.

The main predicted issues from possible combined effects with other river works or the possible developments relate to potential increases in construction traffic, disruption during construction and changes to the water environment. Although details of the design, timings and likelihood of many of these other projects are limited, once this is known, further liaison with SBC, the developers and consenting bodies would be completed to discuss potential overlaps of construction periods and the risks of combined impacts so that they can be addressed early and joint benefits can be realised. Therefore, no additional negative ‘in combination effects’ are anticipated.

Recent and anticipated Natural Flood Management initiatives in the upper catchment were also considered, including those that may be delivered as part of the next phase of Hawick’s long term
flood risk management plan in future. These initiatives aim to restore more natural processes within
the catchment, and therefore any potential combined effects with the Hawick FPS are anticipated to
be positive, bringing benefits to water, geomorphology, landscape and biodiversity.

19. Overview of Key Environmental Issues

The proposed Scheme will give rise to major beneficial impacts for the town associated with the
improved flood risk protection to a 1 in 75 year standard of protection. However, the construction and
operation phases have the potential to result in considerable negative impacts on residents,
businesses and visitors.

The proposed design and construction methods have been selected to minimise negative impacts as
much as possible. Key measures include (but are not limited to):

- Setting back of defences from the rivers’ edge and raising three footbridges to maximise capacity
 of the floodplain and reduce the heights of the proposed flood walls.
- Selecting wall cladding materials to be in-keeping with the local character, and inclusion of glazed
 panels in places to retain views of the rivers at key locations. (A minimum of 10% and maximum
 of 20% of the lengths of defences at selected work sections will incorporate glazed panels.)
- Using in-river temporary working platforms designed to minimise potential impacts on river bed,
 water, fish and nature conservation, and using sheet pile type walls over traditional walls where
 possible to minimise disruption (noise, dust, access etc), health & safety, and land-take issues.
- Planting and landscaping, designing public space improvements (including the re-design of Little
 Haugh), restoring footpaths (and considering improving them where possible), replanting of trees
 on at least a two for one basis, and providing public art subject to further discussions
 with SBC.
- Constructing works following a Construction Environment Management Plan and standard
 guidance to minimise impacts on watercourses, soils, air, residents etc, and careful monitoring.
- Monitoring noise and vibration to enable further measures to protect residents and historic
 buildings where needed, along with Historic Building Recording for key structures.

Through such mitigation measures, the use of construction best practice and adhering to regulations
and guidelines, many negative impacts can be reduced or removed. Nevertheless, given the scale of
the works and sensitive features present, some impacts cannot be avoided fully, for example the noise
and vibration from the close proximity of the construction works to residents and historic buildings,
and temporary disruption to traffic. However, most notably, the effects remaining in the long term
will include the changes in key viewpoints and the character of certain areas of the town, and
permanent changes to the river channel due to the presence of flood defences.

The improved flood risk protection will bring associated benefits to the local economy, and health and
wellbeing of the community, better preservation of historic features and increased tree planting.
Further enhancements to the public spaces and path/cycle network would be investigated where
possible, and improvements to the river channels and floodplain outside of this proposed Scheme may
be delivered later as part of the next phase in the flood risk management strategy for Hawick.

Continued liaison with SBC, SNH, SEPA, HES, RTC and other key stakeholders will be undertaken as the
project progresses to ensure that they are in agreement with the works and are aware of any potential
changes.
20. Next Steps

The ES is being submitted with other Scheme documents required under the Flood Risk Management Act to the consultative bodies and made available for comment by the public. Some other consent applications will also be made during this period.

The provisional dates for the next stages for delivering the proposed Scheme are set out below:

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2017</td>
<td>Environmental Statement submitted</td>
</tr>
<tr>
<td>April 2017</td>
<td>Scheme published</td>
</tr>
<tr>
<td>August 2017</td>
<td>Scheme confirmed</td>
</tr>
<tr>
<td>September 2017</td>
<td>Deemed planning application submitted</td>
</tr>
<tr>
<td>October 2017</td>
<td>Deemed planning consent granted</td>
</tr>
<tr>
<td>February 2018</td>
<td>Enabling works start</td>
</tr>
<tr>
<td>July 2018</td>
<td>Detailed design completed</td>
</tr>
<tr>
<td>August 2018</td>
<td>Tender documentation completed</td>
</tr>
<tr>
<td>September 2018</td>
<td>OJEU notice published</td>
</tr>
<tr>
<td>April 2019</td>
<td>Construction contract awarded</td>
</tr>
<tr>
<td>May 2019</td>
<td>Construction started</td>
</tr>
<tr>
<td>June 2021</td>
<td>Completion of Flood Protection Scheme</td>
</tr>
<tr>
<td>November 2021</td>
<td>Construction completion</td>
</tr>
</tbody>
</table>

For any queries about the proposed Hawick FPS, please contact the Project Manager:

David Mark
Scottish Borders Council Headquarters,
Newtown St. Boswells, Melrose TD6 0SA
Telephone: 01835 824000,
Email: enquiries@scotborders.gov.uk
SBC Website: www.scotborders.gov.uk/index/

Feedback can also be submitted via the Hawick FPS website (www.hawickfloodscheme.com), which will also publish updates on the project’s progress through the subsequent stages.